
Naval Command, Control and Ocean Surveillance Center 
RDT&E Division, San Diego, CA 92152–5001

�	���
 �	���
�����

Technical Report ����
September 1997

D. R. Wilcox

Approved for public release; distribution is unlimited.



iii

EXECUTIVE SUMMARY

OBJECTIVE

This report describes research that sought to develop a computer local area network transport layer
protocol demonstrating the feasibility of implementing reflective memory concepts on standard local
area networks. Unlike the tradition socket interface, the reflective memory approach accesses remote
processor memory directly without the overhead of a user server task. The desire to obtain the bene-
fits of reflective memory without reliance on proprietary hardware motivated the work. The research
targeted primarily high-speed access to real-time databases such as encountered in tracking, display,
and control applications.

METHOD

The new protocol, designated the network memory protocol (NMP), provides network clients with
access to memory residing on a network memory host through access request and reply messages.
Operating system kernel software executing on the network memory host manages the allocation,
address mapping, and access control of the network memory residing on that host. Application tasks
executing on the network memory host avoid system calls by mapping the portion of network
memory of interest into their user address space. Simple algorithms provide atomic access to data
without resorting to system calls.

CONCLUSION

NMP implements local area network access to high-throughput, real-time databases more effi-
ciently than servers employing traditional sockets. The efficiency is gained by avoiding unnecessary
context switches and data buffer copies. Testing revealed that NMP access times were approximately
two-thirds those required by the User Datagram Protocol (UDP), and three to four times faster than
those for the Transmission Control Protocol (TCP). Note, however, that NMP does not provide many
of the services provided by UDP and TCP, such as packet routing, reassembly, and error recovery.
Since NMP provides random access to data, it is more flexible than socket approaches, which are
inherently sequential. The socket approach, on the other hand, does a better job of activating tasks in
response to associated message arrivals.





v

CONTENTS

EXECUTIVE SUMMARY iii. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

1. NETWORK MEMORY MODEL 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

2. COMPARISON TO THE SOCKET APPROACH 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2.1 SERVER PROCESSING 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2.2 ACCESS SEQUENCE 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2.3 TASK ACTIVATION 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

3. NETWORK MEMORY DESIGN 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3.1 BYTE ORDER 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3.2 NETWORK MEMORY PARTITIONS 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3.3 MEMORY-MAPPED INPUT/OUTPUT 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3.4 NETWORK MEMORY OVERLAYS 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

4. UNIX NETWORK MEMORY HOST INTERFACE 11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.1 DEFINING KERNEL MEMORY SPACE FOR NETWORK MEMORY 11. . . . . . . . . . 
4.2 ALLOCATING NETWORK MEMORY 12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.3 CREATING NETWORK MEMORY PARTITIONS AND OVERLAYS 12. . . . . . . . . . . 
4.4 MAPPING NETWORK MEMORY INTO USER SPACE 13. . . . . . . . . . . . . . . . . . . . . . 

5. COORDINATION ALGORITHMS 15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5.1 SENSOR CLIENT ACCESS COORDINATION 15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5.2 USER CLIENT ACCESS COORDINATION 16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5.3 TIME SYNCHRONIZATION 18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

6. NETWORK MEMORY PROTOCOL SERVER INSTRUCTIONS 19. . . . . . . . . . . . . . . . . . . 
6.1 ADDRESS REFERENCE REGISTER 19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6.2 INSTRUCTION FORMAT 19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6.3 SEND AND REPLY FLAGS 20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6.4 SERVER INSTRUCTION OPCODES 21. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

7. NETWORK IMPLEMENTATION CONCEPTS 25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
7.1 NETWORK LAYERS 25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
7.2 ENCAPSULATION 26. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

8. NETWORK MEMORY PROTOCOL SERVER UNIX INTERNALS 27. . . . . . . . . . . . . . . . . 
8.1 NETWORK MEMORY PROTOCOL INTERFACE TO THE ETHERNET 

PROTOCOL 27. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
8.2 NETWORK MEMORY PROTOCOL INTERFACE TO THE INTERNET 

PROTOCOL 29. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

9. NETWORK MEMORY PROTOCOL UNIX KERNEL MODIFICATIONS 33. . . . . . . . . . . . . 
9.1 NETWORK MEMORY PROTOCOL INTERFACE TO THE ETHERNET 

PROTOCOL 33. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
9.2 NETWORK MEMORY PROTOCOL INTERFACE TO THE INTERNET 

PROTOCOL 35. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 



vi

10. NETWORK MEMORY PROTOCOL SERVER TESTING 37. . . . . . . . . . . . . . . . . . . . . . . . . 
10.1 TEST SYSTEM 37. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
10.2 TEST RESULTS 38. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

11. SUMMARY OF CONCLUSIONS 39. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Figures

1. Network memory model 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

2. Network memory mapping example 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

3. Network memory device number layout 12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

4. Local atomic read flowchart 16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

5. Remote atomic read flowchart 17. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

6. Network memory protocol instruction format 19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

7. FreeBSD UNIX network memory protocol server implementation to the Ethernet 
protocol 27. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

8. FreeBSD UNIX network memory protocol server implementation to the Internet
protocol 30. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

9. Network memory protocol performance test configuration 37. . . . . . . . . . . . . . . . . . . . . . . . 



1

1.  NETWORK MEMORY MODEL

The network memory protocol is a local area network transport layer protocol which provides
clients with direct access to data within the random access memories of servers. The server random
access memories accessed by the network memory protocol are called network memories. A proces-
sor implementing a network memory server is called a network memory host.

The network memory protocol, which accesses memory through a local area network, is conceptu-
ally similar to direct memory access protocols, which access memory through memory hardware
interfaces or through processor backplane busses. Although the formats are different, both the net-
work memory protocol and the direct memory access protocols seek the same goal. They seek to
improve performance by accessing processor memory asynchronously, and largely independently, of
other activity on the processor.

The motivation for the network memory protocol was the desire to build very efficient real-time
databases. A real-time database is a structured collection of data representing the state of a dynamic
external environment. Each database entry contains the sampled value of an associated environmental
parameter obtained or derived from an external sensor. The network memory protocol provides a
means for remote sensor clients distributed over a local area network to broadcast their sample data
directly to the memories implementing the real-time databases. It also provides a means for remote
user clients distributed over a local area network to obtain data directly from the memories imple-
menting the real-time databases. These relationships are shown in Figure 1.

NETWORK
MEMORY

LOCAL AREA NETWORK

SENSOR SENSOR USERUSER

SERVER

REMOTE SENSOR CLIENTS REMOTE USER CLIENTS

APPLICATION

NETWORK MEMORY
PROTOCOL

SENSOR USER

Figure 1.  Network memory model.

The operating system of the network memory host manages the network memory. It determines
how much space to allocate for network memory, how global network memory protocol addresses are
mapped into the allocated space, what categories of network memory protocol accesses to permit, and
when to permit them. This enables a network memory to receive the sensor data of interest, when it is
of interest, while ignoring the rest.

Application tasks executing on a network memory host access the local network memory by map-
ping the portion of the kernel address space containing the network memory into their own user



2

address space. Once the mapping is initialized, the application task can directly access the network
memory without the need for additional system calls.

A network memory may contain one or more location monitors. A location monitor is a network
memory location equipped with hardware or software logic that generates an interrupt within the net-
work memory host when the network memory protocol accesses that memory location. Like other
aspects of the network memory, the operating system of the network memory host manages the pres-
ence and location of its location monitors. The same global network memory protocol address may
point to a location monitor in some processors and to an ordinary location in others.



3

2.  COMPARISON TO THE SOCKET APPROACH

Many of the properties, advantages, and disadvantages of the network memory approach are illus-
trated by comparison to the traditional socket approach. The network memory approach is not
intended to replace the socket approach. It is intended, rather, to provide an alternative for those
applications where the network memory approach has an advantage.

2.1  SERVER PROCESSING

In the socket approach, each processor containing a real-time database executes a server task to
accept data from remote sensor clients. When one or more messages from the sensors become avail-
able, the processor operating system kernel activates the server task. The server task uses a socket
read, or similar system call, to copy a message from the network buffer in the kernel address space
into a buffer in its own user address space. It then decodes the message to determine the type of data
it contains. Finally, it copies the data from its user buffer to the appropriate entry in the real-time 
database. The server task repeats the process while additional messages remain available.

The network memory approach, on the other hand, does not require the intervention of a separate
server task scheduled by the kernel. The kernel copies the sensor data from the network buffer
directly into the real-time database entry specified by fields within the message itself.

The socket approach suffers from two inefficiencies in comparison to the network memory
approach.

First, the socket approach socket read or similar system call requires a context switch from the
server task to the kernel, and when messages become available, another context switch back again to
the server task. The network memory approach does not require these context switches. It executes
everything within the kernel. It is, therefore, more efficient.

Second, the socket approach copies the sensor data twice. The first copy is from the kernel network
buffer to a user buffer in the server address space. The second copy is from this user buffer to its final
destination at the real-time database entry. The server task does not have direct access to the message
content in the kernel address space. The server task needs direct access to the message content to
determine the desired destination database entry. The server, therefore, must first request the kernel to
copy the data into a buffer in the server address space.

The network memory protocol, on the other hand, requires only one copy. Since it executes in the
kernel address space, it has direct access to the network memory buffer in the kernel address space. It
copies the sensor data from the kernel network buffer directly to the database entry. The network
memory approach is more efficient because it does not require an intermediate copy of the message
content.

2.2  ACCESS SEQUENCE

The socket approach presents received messages sequentially. A server receiving multiple message
types through the same socket must decode the content of each message to determine the appropriate
processing. Since the server does not know the message type until it decodes the message content, it
must examine all messages received through the socket to obtain the messages of current interest.



4

Applications have random access to the data in the network memory. The kernel places the data of
each message at the memory address specified by the message itself. Although the kernel is itself
decoding received messages sequentially, it is doing so asynchronously to user applications and much
more efficiently than could be done by a user server task. Applications can access data of current
interest without the burden of decoding all messages received. They can also access the highest 
priority data first rather than in the sequence of arrival.

The socket approach can prioritize messages. One way to do this is for the kernel to place the
higher priority messages at the front of socket input queue so that the server receives them first.
While this may help, it is not very flexible. The number of defined socket message priority levels is
usually limited to two, a normal priority level and a higher “out-of-bound” priority level. Further-
more, the message priority is determined by the client rather than by the server. Different servers lis-
tening to the same port cannot independently adjust the priority of message types to meet their own
needs. They are all limited to the priority scheme established by the client.

A better solution is to assign separate port numbers for each message type. The kernel sorts the
received messages by port number without regard for priority. Servers create a separate socket to
receive messages from each port of interest. Each server can access the messages it considers the
highest priority first by reading from their respective sockets first.

The network memory approach permits priorities to be assigned to message data locally because
the data can be accessed from the network memory in any desired order. The system can also change
the priority scheme as system conditions change without notifying the clients.

2.3  TASK ACTIVATION

The network memory approach is ideally suited to the real-time database applications that moti-
vated it. It gains efficiency by performing the required functions directly within the kernel without the
overhead of a server task executing in user space. But there are also applications that require received
data to be processed in some manner immediately upon arrival rather than simply stored in a data-
base.

The network memory protocol does not explicitly define a means of activating a server task to per-
form such processing upon message arrival. The network memory protocol can indirectly activate a
server task, however, by accessing a network memory location monitor. The location monitor inter-
rupt activates the server task.

The socket approach associates each socket with a list of server tasks waiting for messages from
the respective socket. The kernel automatically places the server tasks into the ready state when the
message arrives. The socket approach, therefore, is well-suited for applications requiring immediate
processing of messages upon their arrival.

If location monitors are available where needed, the network memory approach can be more flex-
ible than the socket approach. Consider a system, for example, where a sensor client periodically
broadcasts data samples indicating the position of a physical object to two processors. One processor
supports a high-resolution tracker application that accurately predicts the future position of the object
based upon all the received sample positions from the sensor. The other processor supports a display
which, due to the display resolution, can skip sensor position samples as long as the period between
the samples it accepts is not too great.



5

Using the socket approach, each processor contains a server that accepts all sensor position sample
messages. This is fine for the processor supporting the high-resolution tracker application since it
needs to receive all the samples to predict the future position of the object accurately. The processor
supporting the low-resolution display application does not need to receive every sample. It would
prefer to skip the processing of unnecessary samples in order to conserve its processing resources for
other applications. Unfortunately, the socket approach forces it to receive every sample, even if the
sample is not needed.

The network memory approach with location monitors provides a better solution. The processor
supporting the high-resolution tracker application uses a location monitor to activate the application
task when each sensor sample data message arrives. The operating system of the processor support-
ing the low-resolution display application activates its display application task periodically at a rate
consistent with the display resolution requirements. The display application task simply reads the lat-
est sample stored in the network memory when it needs it. The sample in the network memory may
have been updated many times between successive reads by the display application task. Thus, the
task skips the samples it does not need.



6



7

3.  NETWORK MEMORY DESIGN

Before introducing the network memory protocol message format, it is helpful to examine some of
the issues that guided its design.

3.1  BYTE ORDER

The network memory protocol accesses network memory data using the big endian format. The big
endian format represents the numbers that span more than a single byte such that the most-significant
bit of the number is in the byte with the lowest address.

Network memory host application tasks use the ntohs  and ntohl  macros to convert network
memory 2-byte and 4-byte numeric data, respectively, into host format. They use the htons  and
htonl  macros to convert host 2-byte and 4-byte numeric data, respectively, into network memory
format. Although not required by application tasks executing on big endian network memory hosts,
since no conversion takes place, it is good practice to include these macros in all application task
source code for clarity and portability to little endian hosts.

The network memory protocol uses the big endian format because it matches the network byte
order. This enables all data types to be treated simply as byte strings. There is no need for the network
memory protocol to define separate instructions for the various multiple-byte numeric data types.
Also, since there is no conversion between network byte order and network memory byte order, any
received network memory data that are not used by network memory host application tasks are not
needlessly converted.

3.2  NETWORK MEMORY PARTITIONS

Network memory is implemented within the kernel memory of the network memory host. Since the
physical memory available to the kernel is generally considered a precious resource, the space allo-
cated to network memory should be no larger than necessary.

A simple and efficient way for the host to map global network memory addresses into kernel
memory addresses is to add a differential constant to the address. When all the global network
memory addresses of interest at a particular network memory host are clustered within a relatively
small range of values, the network memory host can perform this mapping with little or no wasted
kernel address space. The system designer should strive to cluster the assignment of global network
memory addresses associated with each network memory host to take advantage of this property.

Unfortunately, clustering all the global network memory addresses of interest at a particular net-
work memory host may not be possible. Consider, for example, a system containing three network
memory hosts and three clusters of global network memory addresses. Denote the network memory
hosts as 1, 2, and 3, and the clusters as A, B, and C. Assume further that the network memory in host
1 maintains copies of clusters A and B, that the network memory in host 2 maintains copies of clus-
ters B and C, and that the network memory in host 3 maintains copies of clusters A and C. If for each
host, the two clusters maintained by that host are mapped together into a single contiguous section of
kernel address space, then at least one of the hosts wastes kernel address space. Figure 2 illustrates
that the amount of wasted space in that the host is equivalent to the size of the cluster not included.

The problem is solved by the host dividing the global network memory address space into indepen-
dently mapped partitions. Each address cluster of interest is assigned to a separate partition. When the



8

A

B

C

GLOBAL
NETWORK
MEMORY
ADDRESS

SPACE

KERNEL
MEMORY
ADDRESS

SPACE

1
A

B

C

GLOBAL
NETWORK
MEMORY
ADDRESS

SPACE

KERNEL
MEMORY
ADDRESS

SPACE

2

A

B

C

GLOBAL
NETWORK
MEMORY
ADDRESS

SPACE

KERNEL
MEMORY
ADDRESS

SPACE

3

ÉÉ
ÉÉ

WASTED
SPACE

Figure 2. Network memory mapping example.

host receives a client message, it checks the minimum and maximum global network memory address
of each partition of interest to determine whether the specified access is within the range of the
respective partition. The approach avoids wasting kernel address space because the host only needs to
allocates space for those partitions associated with address clusters of interest.

The preceding example used partitioning to eliminate a gap in the contiguous section of kernel
memory address space allocated to network memory. One can also use partitioning to split the map-
ping of a contiguous network memory address space into separate sections of kernel memory address
space. In other words, one can also use partitioning to intentionally insert gaps into the kernel
memory address space allocated to network memory.

3.3  MEMORY-MAPPED INPUT/OUTPUT

Many computers contain a backplane bus that connects the processing hardware to the input/output
hardware through a memory-mapped interface. The processor software controls the input/output
hardware by accessing dedicated memory addresses recognized by the input/output hardware. The
kernel configuration reserves a separate section of the kernel memory address space for these special
addresses.

The network memory protocol does not distinguish between accesses to conventional memory
addresses versus those to memory-mapped input/output hardware devices. This enables processors on
the local area network to share input/output devices. As is the case for any system where multiple
processors share a common resource, proper consideration must be given to coordination.

The kernel memory address space section configured for input/output hardware is not necessarily
contiguous with the section used for network memory implemented from conventional memory. Net-
work memory partitions allow the sections to be mapped independently. The same concept is applica-
ble to sections of other types of memory as well, such as read-only memory and non-volatile memory,
which may reside in isolated sections of the kernel memory address space.

3.4  NETWORK MEMORY OVERLAYS

Consider a system with several network memory hosts. All the hosts are programmed to respond to
the same range of global network memory addresses. When a sensor client writes to a global network
memory address within this range, all the hosts write the data into their respective network memories
simultaneously. When a user client reads from a global network memory address within this range, all
the hosts send a reply message containing the data read from their respective network memories. If
there are many hosts, then there will be many reply messages. Usually one would rather have the user



9

client receive a reply from a single host while still having the sensor client update all the hosts. This
can be accomplished using network memory overlays.

A network memory overlay is a mapping of network memory partitions such that different parti-
tions of the global network memory address space map into the same section of host kernel memory
address space. In other words, each location in the network memory overlay has two or more global
network memory addresses for the same location.

The problem presented by the example is solved by using one global network memory address
partition for sensor client writes to all hosts and a different one for user client reads at one of the
hosts. The partitions are programmed to overlay the same locations in the kernel memory address
space. The same data written to all hosts at an address in one partition can then be read back from a
single host at another corresponding address in the other partition.



10



11

4.  UNIX NETWORK MEMORY HOST INTERFACE

This section describes how to allocate and map network memory within a Unix host that has been
configured with a network memory driver.

4.1  DEFINING KERNEL MEMORY SPACE FOR NETWORK MEMORY

Unix hosts implement network memory through a character device driver. The network memory
driver is similar to those for the /dev/mem  and /dev/kmem  nodes. Application tasks locate the
network memory driver through one or more /dev/netmem  nodes. The system administrator uses
the Unix mknod command to define a separate /dev/netmem  node for each contiguous section of
kernel memory to be made available for network memory.

Every Unix device has a device number. The device number bits are divided into two groups
called the major device number and the minor device number, respectively. The system adminis-
trator specifies the major and minor device numbers as parameters to the Unix mknod command. The
kernel uses the major device number to identify the driver desired. The interpretation of the minor
device number depends upon the driver implementation.

For character devices, the minor device number typically selects the particular device or interface
controlled by the driver. This enables the same driver software to be applied to a set of similar
devices. The minor device number can also be used to specify the way the driver controls the device.
Magnetic tape drivers, for example, usually use a bit in the minor device number to select whether to
rewind the tape or not when the device is closed.

The kernel passes the entire device number to the driver routines as a single parameter. If one
defines the least-significant bit position as bit position 0, the major device number usually occupies
device number bit positions 15 through 8. The remainder of the bits, both most-significant and least-
significant, define the minor device number.

The network memory driver divides the minor device number into a network memory number in
the least-significant bits and a network memory size in the remaining most-significant bits. The net-
work memory size is specified as the number of memory allocation units. A memory allocation unit
typically contains 4096 bytes.

Figure 3 shows the network memory device number layout. The four least-significant bits specify
the network memory number. The network memory size is split between two fields. The least-
significant bits are in device number bit positions 7 through 4 and the most-significant bits are in
device number bit positions 31 through 16. Other layouts are possible by modifying the macros defin-
ing the layout before compiling the network memory driver into the kernel.

The rationale for the layout in figure 3 is as follows. The memory allocation unit is 4096 bytes. It
takes 12 bits to represent an address within a given memory allocation unit. Unix device numbers are
defined as being type int  in the language C. Type int  contains 32 bits in a 32-bit processor. Thus,
the number of bits required to address uniquely each allocation unit is 32 – 12 = 20 bits. The maxi-
mum network memory size is one that includes the entire memory address space. Thus, the maximum
network memory size can be defined by 20 bits. These 20 bits are split into a group of 16 and a group
of 4, as shown in figure 3. Since the major device number is 8 bits, this leaves 32 – 20 – 8 = 4 bits for
the network memory number.



12

�� �� �
 �	 �� �� �� �� �� �� �� �� �
 �	 �� �� �� �� �� �� �� �� 
 	 � � � � � � � �

MAJOR
DEVICE

NUMBER

Figure 3. Network memory device number layout.

MINOR
DEVICE

NUMBER

MINOR
DEVICE

NUMBER

NETWORK
MEMORY
NUMBER

NETWORK
MEMORY SIZE

Assuming the layout design approach just described and an 8-bit major device number field, the
number of bits in the network memory number field is related to the size of an allocation unit. If the
allocation unit contains 2048 bytes, the network memory number field contains 3 bits. If the alloca-
tion unit contains 8192 bytes, the network memory number field contains 5 bits. The number of bits
defined by type int  is not a factor.

4.2  ALLOCATING NETWORK MEMORY

The system administrator uses the Unix mknod command to create a /dev/netmem  node. The
/dev/netmem  node defines the size of a possible network memory. Kernel memory is not actually
allocated to the network memory until the application user executes an open  system call with the
/dev/netmem  node as a parameter. The open  system call decodes the minor device number to
determine the amount of kernel memory to allocate.

Multiple tasks can open the same network memory simultaneously. The first open  system call for
a particular network memory allocates kernel memory to that network memory. Later open  system
calls for the same network memory do not allocate additional kernel memory because it is already
allocated.

The kernel keeps track of the number of successful open  and close  system calls associated with
each network memory. The kernel informs the network memory driver when all the previous opens
become closed. The network memory driver frees the kernel memory associated with the network
memory on the final close.

4.3  CREATING NETWORK MEMORY PARTITIONS AND OVERLAYS

Network memory partitions and overlays are created using the ioctl  system call. The ioctl
parameter has the following C language format:

typedef struct {
NETMEM_ADDR net_addr_min;
NETMEM_ADDR net_addr_max;
caddr_t local_addr_base;
unsigned short access_flags
unsigned char read_key_length
unsigned char write_key_length



13

NETMEM_KEY read_key;
NETMEM_KEY write_key;

} NETMEM_PARTITION;

The net_addr_min  and net_addr_max  elements specify the minimum and maximum global
network memory byte addresses accepted by the partition. The local_addr_base  element speci-
fies the base of the partition relative to the base of the section of contiguous kernel memory allocated
for the network memory. Defining the same local_addr_base  element content for two or more
partitions creates a network memory overlay.

The access_flags  element bits inhibit respectively read, write, and pointer access.

The read_key  and write_key  elements indicate the optional binary passwords that network
memory protocol messages must provide before respectively reading from or writing to the partition.
The read_key_length  and write_key_length  elements specify the length of the read key
and write key. A key length of zero disables the respective key.

The network memory driver maintains a list of the defined network memory partitions for each net-
work memory. It makes the list available to the software implementing the network memory protocol.
The network memory protocol only accesses the network memory when it finds an entry in the list
giving it an address mapping and permission for the requested access. The network memory protocol,
therefore, does not see a network memory that has been opened but has not yet received any partition
definitions.

Network memory partitions cannot be created until a network memory is created using the open
system call. In the case of memory-mapped input/output hardware, however, no kernel memory is
allocated. The maximum kernel memory size specified by the device number is, therefore, zero.

4.4  MAPPING NETWORK MEMORY INTO USER SPACE

The application task maps the section of contiguous kernel memory implementing the network
memory into application user space using the mmap system call. The starting address is relative to the
base of the kernel memory section dedicated to the network memory. Once the mmap system call has
been executed successfully, the application task can access the network memory directly without the
need of further system calls.

The mapping between the network memory and the application task user address space is com-
pletely independent of the mapping between the network memory and the global network memory
address space.



14



15

5.  COORDINATION ALGORITHMS

One of the goals of the network memory protocol is to provide a set of simple instructions that can
be selected and arranged within messages to implement various memory access algorithms. This
gives the system designer the flexibility to choose the algorithms that best suit the overall application.
The algorithms presented here are intended to show that problems such as coordination can be solved,
and to suggest a rationale for the inclusion of various instructions within the protocol.

Both the operating system and the application tasks of a network memory host potentially access
the network memory. The operating system accesses the network memory to transfer data between
the network memory and the local area network as directed by the network memory protocol. Its
accesses are associated with an interrupt from the local area network interface hardware. These inter-
rupts can happen at any time. Thus, the operating system can interrupt an application task while the
application task is also accessing the network memory. This can create a coordination problem when
the operating system and the application task attempt to access the same set of software-related
network memory locations simultaneously and at least one of them is modifying the locations.
Although generally rare, such situations are possible and must be addressed.

The application tasks could simply disable network interrupts while accessing the network
memory. This would require two system calls, one to disable network interrupts before the access and
the other to enable them after the access. This is a poor solution because it degrades performance to
protect against a situation that rarely occurs. Fortunately, there are simple alternatives that do not
require the costly overhead of system calls.

5.1  SENSOR CLIENT ACCESS COORDINATION

Consider a system in which sensors send data records over a local area network using the network
memory protocol. A processor interested in these data opens a network memory to receive the sensor
data records. Application tasks executing on the processor access the sensor data records by mapping
the network memory into their user address space and reading the data directly from that address
space. A situation could arise where an application task begins reading a sensor data record, the oper-
ating system interrupts the application task and updates the same sensor data record with newly
received sensor data, and then the application task finishes reading the sensor data record. The
application task thus obtains a portion of the old record mixed with a portion of the updated record.
Since the resulting hybrid is likely erroneous, application tasks often need a means of ensuring that
the sensor data records they read from the local network memory are atomic.

The problem can be solved by including a sequence number in the network memory that is
associated with the the sensor data record. When the sensor client has new data to send, it constructs a
message using the network memory protocol and transmits the message over the local area network.
The message instructs any listening network memory hosts to write the new data into their network
memory and to increment the associated sequence number.

When the network memory host receives the message, its operating system interrupts lower priority
processing to execute the message instructions. This lower priority processing may include an
application task that is currently accessing the same sensor data record. The application task first
reads the sequence number, then reads the sensor data, and finally reads the sequence number again.
If the sequence number contains the same value both before and after reading the sensor data, then
the application task knows that the data record was not overwritten by the operating system. If the



16

sequence number changed, then the application task reads the sensor data and the sequence number
again. This process continues until the last two reads of the sequence number yield the same value.
Figure 4 shows a flowchart of the algorithm.

YES

READ
SEQUENCE NUMBER

HAS
SEQUENCE NUMBER

CHANGED?

READ
SENSOR DATA

READ
SEQUENCE NUMBER

NO

BEGIN

END

Figure 4. Local atomic read flowchart.

The network memory, rather than the sensor client, maintains the value of the sequence number. In
addition to functions such as read and write, the network memory protocol provides a function to
increment the content of an address. The sensor client uses this increment function to increment the
sequence number stored in the network memory. The sensor client does not need to know the current
value of the sequence number in order to increment it. This enables the algorithm to work with more
than one sensor client updating the same sensor data record since each sensor client does not need
knowledge of the activity of the other sensor clients.

Although the operating system may interrupt the application task to update the sensor data record,
the application task will never interrupt the operating system while the operating system is updating
the sensor data record. The entire transaction performed by the message will appear to the application
task as atomic. It does not matter, therefore, where the sensor client places the instruction to incre-
ment the sequence number relative to the other instructions within the message.

The sequence number also provides a simple way for an application task to detect whether it has
missed any sensor data record updates since it last accessed the sensor data record and, if so, how
many sensor data record updates were missed.

For systems where both the sensor data messages are processed immediately upon arrival and
where the period between successive sensor data messages is relatively long, the sequence number
and associated algorithm are unnecessary. In such systems, the network memory protocol executing
within the operating system does not overwrite old sensor data with new sensor data until long after
all the application tasks have finished accessing the old sensor data. It is recommended, however, that
sensor clients support the sequence number to provide the needed flexibility in case this situation
changes in the future.

5.2  USER CLIENT ACCESS COORDINATION

Consider a system in which remote clients use the network memory protocol to obtain data records
over a local area network from a network memory host. Application tasks executing on the network



17

memory host update the data records. They map the network memory into their user address space
and write directly into that address space. A situation could arise where an application task executing
on the network memory host begins updating a data record, the operating system interrupts the
application task to read the same data record on behalf of a remote client, and then the application
task completes updating the data record. The remote client would then obtain a portion of the old
record mixed with a portion of the updated record. Since the resulting hybrid is likely erroneous,
remote clients often need a means of ensuring that the data records obtained from the remote network
memory are atomic.

One solution is to include a flag in the network memory that is associated with the data record. The
flag indicates whether the application task is currently updating the data record. The application task
sets the flag before beginning the update and clears the flag after completing the update. If the remote
client sees the flag as cleared, it knows that the received data record is atomic; if it sees it as set, it
knows that it is not atomic. Upon detecting reception of a non-atomic data record, the client simply
repeats the data record request until receiving an atomic version of the data record. Figure 5 shows a
flowchart of the algorithm.

NO

READ FLAG

DOES
FLAG INDICATE

ATOMIC?

RECEIVE REPLY
MESSAGE

SEND REQUEST
MESSAGE

YES

�����

���

Figure 5. Remote atomic read flowchart.

READ APPLICATION
DATA

While seemingly simple, this approach has a number of disadvantages. An obvious disadvantage is
that repeated requests for the data record increase local area network traffic. Furthermore, transmit-
ting the request and receiving the reply for each attempt takes execution time and adds complexity
within the client. Another problem is that the client has no visibility into how long the network
memory host application task will need to complete its data record update. The client, therefore, can-
not determine the optimum time to wait before repeating its data record request.

Another solution is for the clients to access the network memory data records indirectly through
pointers also in network memory. When a network memory host application task updates a network
memory data record, it first makes a copy of the data record that also resides in network memory. The
pointer used by the client remains pointing to the original data record while the application task
updates the copy. Client read accesses to the original data record remain atomic since the original data
record is not altered. When the application task completes its update of the copy, it modifies the
pointer so that it now points to the copy. The copy thus becomes the new original. The old original is
freed to provide space for the copy of a future data record update.



18

The first solution, using the flag, is very efficient as long as the network memory host application
task data record updates do not conflict with remote client reads of the same data records. Latency
degrades significantly when a conflict, although hopefully rare, does occur. The degradation is due
primarily to the need to process additional network memory protocol messages. In the absence of
conflicts, the second solution is less efficient than the first because it copies the data record. This may
become an issue for large data records. The second solution has the advantage that conflicts, when
they do occur, do not degrade latency.

5.3  TIME SYNCHRONIZATION

Consider a real-time system in which a network memory host receives sample values of a parame-
ter from a client sensor using the network memory protocol over a local area network. A network
memory host application task uses the received parameter sample values to predict the value of the
parameter for the time between samples. The application task requires not only the sample values, but
also the time each respective sample value was captured, to calculate the prediction.

Ideally, the sample value time should be captured at the same instant as the respective sample
value. The local area network and the software activity of the network memory host introduce delay
from the time the sensor client captures the sample to the time that the application task receives the
sample. This delay varies in duration from sample to sample. Therefore, the best real-time clock to
capture sample time is one at the sensor client. When this is not practical, the next best choice is a
real-time clock at the network memory host local area network interface.

The network memory protocol provides an instruction which, when executed, stores the current
value of the network memory host real-time clock into the network memory. Sensor clients may time-
stamp their data samples with the time they arrive at the network memory host by including this
instruction within their network memory protocol sample data message. Since there are usually varia-
tions in the time between when the sample arrives at the network memory host to when the applica-
tion task has an opportunity to process it, the network memory protocol provides a more accurate
time stamp than one taken within the application task.

The network memory protocol time-stamp instruction also supports algorithms that synchronize the
real-time clocks of the network memory hosts to each other. A client, normally one implemented
within one of the network memory hosts, periodically broadcasts a network memory protocol mes-
sage containing the time stamp instruction to all the network memory hosts on the local area network.
This message acts as a strobe that captures the state of all the respective real-time clocks at a given
instant in time. The local real-time clock value is adjusted by comparing it against the values at other
hosts that were captured by the same strobe. The real-time clock rate is adjusted by comparing the
time value precession from one strobe to the next.



19

6.  NETWORK MEMORY PROTOCOL SERVER INSTRUCTIONS

All network memory protocol messages are composed of network memory protocol instructions.
The message instructions form a small program defining the network memory access. The instruc-
tions are similar to those of a very simple hardware processor. This section describes each network
memory protocol instruction in detail.

6.1  ADDRESS REFERENCE REGISTER

The software that implements the network memory protocol at the network memory host contains a
variable called the address reference register. The address reference register fully defines the
address of a byte in the network memory global address space. The beginning of each network
memory protocol message should include instructions to load the address reference register. All the
instructions that access network memory data compute the address to access relative to the content of
the address reference register.

Global network memory addresses generally require a large number of bits. As presented pre-
viously, the address assignments for locations of interest within a network memory can often be clus-
tered within a limited range of addresses. The purpose of the address reference register is to specify
the base address of a limited range of addresses. The instruction which actually access the network
memory can then use a much smaller offset field to address locations within that range relative to the
base address. This is advantageous for a message containing a sequence of instructions that access
locations within the same limited range because the many bits defining the base address only need to
be coded once for the entire sequence.

6.2  INSTRUCTION FORMAT

Figure 6 shows the network memory protocol instruction format.

31

OPCODE

30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OFFSETVALUE

Figure 6. Network memory protocol instruction format.

RS

REPLY FLAG

SEND FLAG

All  network memory protocol instructions are 4 bytes long. They are all aligned on a 4-byte bound-
ary within the data field of the local area network packet. Some instructions have appended byte
strings. The byte strings are also aligned on 4-byte boundaries. They are padded, if necessary, to fill
the gap to the next four-byte boundary. Instruction fields specifying byte string length do not include
the padding.

The network memory protocol server software works with linked lists of small buffers containing
the raw data received from the local area network. In the Berkeley UNIX world, these buffers are
called mbuf ’s. In the LINUX world they are called skbuf’s. Although these buffers come is various
forms that support various maximum raw data lengths, they all have the common property that the
maximum raw data length is a multiple of 4 bytes. Making all network memory protocol instructions



20

4 bytes long greatly simplifies the implementation because instructions are never split across the
boundaries of these small buffers.

The value and offset fields are aligned on byte boundaries so that network memory protocol soft-
ware can use byte-oriented processor instructions. This avoids the use of more complex processor
instructions, or sequences of instructions required to manipulate unaligned bit fields.

6.3  SEND AND REPLY FLAGS

The instruction most-significant bit positions 31 and 30 contain the send flag and reply flag,
respectively. The send flag informs the network memory server that the client wants the instruction
returned as a reply instruction. The reply flag indicates that the instruction is a reply instruction.

If  the send flag is set by the client, the responding network memory server sets the reply flag before
returning the instruction. If no errors occurred during processing of the instruction, the server also
clears the send flag. Network memory servers ignore instructions with set reply flags because they
are directed to a client.

When a client transmits a read instruction to the server, it must set the read instruction send flag to
get back the value read. If the client does not need the read data, but is only interested in using the
read instruction to trigger a location monitor, then it can leave the send flag cleared.

Clients normally do not set the send flag when they transmit write instructions to servers since the
write instruction does not return new user data. The write instruction send flag can be useful, how-
ever, for providing the client with verification that the write data returned matches what was sent and
that no errors occurred during instruction execution.

The reply flag may seem unnecessary since, by definition, anything that a client receives back from
a server should be a reply. The problem arises when the same processor acts as both a client and as a
server. Consider the following example. A local processor, acting as a client, transmits a message
requesting a remote processor to read some data and return the results back to the local processor.
Shortly thereafter, the local processor receives a message back from the remote processor. If the mes-
sage received is a reply to its original read request, then the local processor should transfer the read
data from the message into its network memory. Suppose, instead, that the received message is a read
request from the remote processor also acting as a client. Then the local processor, acting as a server,
should transfer the read data in the other direction, from its network memory to the message. Since
the functions differ, the local processor needs the reply flag to distinguish between a reply from a
remote server and a new server request from a remote client.

The reply flag also prevents the development of protocol infinite loops. Consider the consequences
of broadcasting a request message that generates a reply message. If there is no way to distinguish
between the request message and the reply message, the reply message might be misinterpreted as
another request message that would also generate a reply. This could happen at every processor that
receives the broadcast. The resulting chain reaction could saturate the network bandwidth with use-
less messages. The reply flag prevents this from happening because a reply message never generates
another reply message.



21

6.4  SERVER INSTRUCTION OPCODES

The instruction opcode field specifies the function performed by the instruction. The opcodes are
listed below. The number to the left of each entry is the opcode value in hexadecimal.

00 Return Instructions

The Return instruction marks the end of a network memory protocol message. It is included because
some local area networks require packets to have at least a minimum number of data bytes and that
minimum may be larger than required by a network memory message. Ethernet, for example,
requires packets to contain at least 46 data bytes.

01 Load Address Instruction

The Load Address instruction replaces the contents of the three least-significant bytes of the
address reference register with the contents of the three least-significant bytes of the instruction. The
remaining bytes of the address reference register are unchanged.

02 Load Address String Instruction

The Load Address String instruction loads the contents of the bytes immediately following the
instruction value field into the address reference register. The instruction value field specifies the
number of bytes to be loaded. If the length of the byte string minus two is both positive and not a
multiple of 4 bytes, additional bytes are appended to fill the space to the next 4-byte boundary. The
additional bytes are not included in the length specified by the instruction value field.

If the address byte length is less than or equal to three, it is recommended that the Load Address
instruction be used, rather than the Load Address String instruction, because the former is likely to
execute faster within the server.

03 Load Pointer Instruction

The Load Pointer instruction loads the address reference register with a pointer read from the net-
work memory. The pointer is located at the address specified by the address reference register plus
the unsigned contents of the instruction offset field. The number of bytes forming the pointer stored
in the network memory is host-dependent, but shall not exceed 8 bytes. When the number of bytes
forming the pointer is less than the number of bytes in the address reference register, the pointer
replaces the respective least-significant bytes of the address reference register and leaves the most-
significant bytes unchanged.

This instruction enables the network memory protocol to access data at locations selected by a net-
work memory host application task.

04 Load Read Key Instruction

The Load Read Key instruction loads the contents of the bytes immediately following the instruc-
tion value field into the read key register. The instruction value field specifies the number of bytes
to be loaded. If the length of the byte string minus two is both positive and not a multiple of 4 bytes,
additional bytes are appended to fill the space to the next 4-byte boundary. The additional bytes are
not included in the length specified by the instruction value field.



22

05 Load Write Key Instruction

The Load Write Key instruction loads the contents of the bytes immediately following the instruc-
tion value field into the write key register. The instruction value field specifies the number of bytes
to be loaded. If the length of the byte string minus two is both positive and not a multiple of 4 bytes,
additional bytes are appended to fill the space to the next 4-byte boundary. The additional bytes are
not included in the length specified by the instruction value field.

06 Read Byte Instruction

The Read Byte instruction reads the contents of the network memory byte at the address specified
by the contents of the address reference register plus the unsigned contents of the instruction offset
field. The read byte is inserted into the instruction value field.

The instruction generates an error, rather than performing the read, if the read key associated with
the addressed partition is active and does not match the read key register.

07 Write Byte Instruction

The Write Byte instruction writes the contents of the instruction value field into the network
memory at the address specified by the contents of the address reference register plus the unsigned
contents of the instruction offset field.

The instruction generates an error, rather than performing the write, if the write key associated with
the addressed partition is active and does not match the write key register.

08 AND Byte Instruction

The AND Byte instruction replaces each bit of a network memory byte with a bit that is the logical
AND of the original bit and the bit in the respective bit position of the instruction value field. The
network memory byte is located at the address specified by the contents of the address reference reg-
ister plus the unsigned contents of the instruction offset field.

The instruction generates an error, rather than modifying the byte, if the write key associated with
the addressed partition is active and does not match the write key register.

09 OR Byte Instruction

The OR Byte instruction replaces each bit of a network memory byte with a bit that is the logical
OR of the original bit and the bit in the respective bit position of the instruction value field. The net-
work memory byte is located at the address specified by the contents of the address reference register
plus the unsigned contents of the instruction offset field.

The instruction generates an error, rather than modifying the byte, if the write key associated with
the addressed partition is active and does not match the write key register.

0A Exclusive-OR Byte Instruction

The Exclusive-OR Byte instruction replaces each bit of a network memory byte with a bit which
is the logical exclusive-OR of the original bit and the bit in the respective bit position of the instruc-
tion value field. The network memory byte is located at the address specified by the contents of the
address reference register plus the unsigned contents of the instruction offset field.



23

The instruction generates an error, rather than modifying the byte, if the write key associated with
the addressed partition is active and does not match the write key register.

0B Add Byte Instruction

The Add Byte instruction replaces the contents of a network memory byte with the arithmetic sum
of the contents of the original byte and the contents of instruction value field. The network memory
byte is located at the address specified by the contents of the address reference register plus the
unsigned contents of the instruction offset field.

The instruction generates an error, rather than modifying the byte, if the write key associated with
the addressed partition is active and does not match the write key register.

0C Read Byte String Instruction

The Read Byte String instruction reads the contents of the byte string from network memory start-
ing at the address specified by the contents of the address reference register plus the unsigned con-
tents of the instruction offset field into the message bytes that immediately follow the instruction.
The length of the byte string is specified by the instruction value field. If the length of the byte string
is not a multiple of 4 bytes, additional bytes are appended to fill the space to the next 4-byte boundary.
The additional bytes are not included in the length specified by the instruction value field.

The instruction generates an error, rather than performing the read, if the specified string extends
beyond the limit of the addressed partition, or if the read key associated with the addressed partition
is active and does not match the read key register.

0D Write Byte String Instruction

The Write Byte String instruction writes the contents of the byte string that immediately follows
the instruction into the network memory starting at the address specified by the contents of the
address reference register plus the unsigned contents of the instruction offset field. The length of the
byte string is specified by the instruction value field. If the length of the byte string is not a multiple
of 4 bytes, additional bytes are appended to fill the space to the next 4-byte boundary. The additional
bytes are not included in the length specified by the instruction value field.

The instruction generates an error, rather than performing the write, if the specified string extends
beyond the limit of the addressed partition, or if the write key associated with the addressed partition
is active and does not match the write key register.

0E Read Time Stamp Instruction

The Read Time Stamp instruction reads the local real-time clock value stored in network memory
at the address specified by the contents of the address reference register plus the unsigned contents
of the instruction offset field. It then converts it into the global time format and places the result into
the byte string immediately following the instruction. The instruction value field specifies the byte
string length as 8 bytes.

The global time format consists of 8 bytes. The four most-significant bytes specify the time in
seconds. The four least-significant bytes specify the binary fraction of a second. The value is in big
endian format.



24

The instruction generates an error, rather than performing the read, if the specified string extends
beyond the limit of the addressed partition, or if the read key associated with the addressed partition
is active and does not match the read key register.

0F Write  Time Stamp Instruction

The Write Time Stamp instruction writes the value of the network memory host real-time clock
into the network memory at the address specified by the contents of the address reference register
plus the unsigned contents of the instruction offset field.

To avoid an impact on performance, this instruction does not specify the format of the real-time clock
value actually stored in network memory other than to limit it to no larger than 8 bytes. The network
memory host is free to use its local real-time clock format and to store the value in either big endian
or little endian format.

The instruction generates an error, rather than performing the write, if the specified string extends
beyond the limit of the addressed partition, or if the write key associated with the addressed partition
is active and does not match the write key register.



25

7.  NETWORK IMPLEMENTATION CONCEPTS

This section presents the relationship of the network memory protocol implementation to the net-
work layer and encapsulation concepts.

7.1  NETWORK LAYERS

Network software is typically built in layers. At the top is the socket layer which provides the user
interface to the network through system calls. At the bottom is the network hardware driver. Between
the top and bottom layers are software layers implementing one or more protocols such as the Internet
Protocol (IP) and the Transmission Control Protocol (TCP). When the user writes a message to a
socket, the message passes from the socket layer downward in sequence through the protocol layers
until eventually reaching the driver that transmits it over the physical media. Conversely, when the
driver for the physical media receives a message, the message passes from the driver upward in
sequence through the protocol layers until eventually reaching the socket layer where it is made avail-
able for the user to read.

Network software is partitioned into layers so that various combinations of protocols at the differ-
ent layers, including those for the physical media, can be provided by selecting from among the pos-
sible implementations at each layer. One can select, for example, either the TCP protocol or the
Express Transport Protocol (XTP) above the IP protocol, and either the Ethernet protocol or the Fiber
Distributed Data Interface (FDDI) protocol below the IP protocol. The layered partitioning allows
the IP protocol processing to reside within a single implementation regardless of the particular proto-
cols above or below it.

In actual practice, however, the layers are not entirely independent of one another. When a protocol
passes a received message to a protocol immediately above it, for example, the lower protocol must
determine which upper protocol to select. A field in the header processed by the lower protocol speci-
fies the desired upper protocol. The Ethernet protocol uses the “Ether type” field in the thirteenth and
fourteenth bytes of the Ethernet header. The IP protocol uses the “protocol” field in the tenth byte of
the IP header. Implementing a new upper protocol requires a modification to all the existing lower
protocols that interface to it so that the lower protocols can use their respective protocol selection
fields to identify the new upper protocol.

Since the network memory protocol is intended to support high-speed, real-time database applica-
tions, it is especially important to minimize the round trip delay through the various network layers.
An obvious way to do this is to eliminate some of the layers from the round-trip path. For example,
the network memory protocol layer can be placed immediately above the Ethernet protocol layer. This
has the advantage of very fast server response time. It has the disadvantage that the clients must deal
with absolute media access control addresses and limit the length of their messages. Alternatively, the
network memory protocol layer can be placed immediately above the IP protocol layer. The IP layer
provides more addressing flexibility and overcomes the limit on message length at the cost of addi-
tional delay in the round-trip path.

A network memory host can support both approaches simultaneously. It is, therefore, useful to sep-
arate the portion of the network memory protocol software that implements the instruction set from
the portions that interface the instruction set processing to the other network protocols at various
layers.



26

7.2  ENCAPSULATION

Each protocol layer adds protocol-specific information to messages before passing them downward
to the next-lower protocol layer. The additional information may include such items as protocol-spe-
cific source and destination addresses, control parameters, and check sums. Conversely, each layer
removes information specific to itself from a message before passing the message upward to the next-
higher layer. The process of enclosing a message within a protocol-specific conceptual envelope of
additional information is called encapsulation.

The encapsulation concept is detrimental to a network memory protocol server layer placed
immediately above an Ethernet layer. When the Ethernet layer receives a message, it strips the Ether-
net header before passing the message to the layer above it. The Ethernet header contains the media
access control source address of the client. The network memory protocol layer may construct a reply
message. But if the Ethernet layer passes the network memory protocol layer a client message with-
out the media access control source address, there is no way for the network memory protocol layer
to inform the Ethernet layer of where to send the reply.

To solve the problem, the Ethernet layer implementation must be modified so that when it detects
that a received message is to be passed to the network memory protocol layer, it does not strip the
Ethernet header from the message before passing it.



27

8.  NETWORK MEMORY PROTOCOL SERVER UNIX INTERNALS

This section describes issues related to the internal implementation of the network memory proto-
col server within the FreeBSD UNIX kernel. The availability of both the source code and textbooks
describing the source code in detail led to the choice of the FreeBSD.

8.1  NETWORK MEMORY PROTOCOL INTERFACE TO THE ETHERNET PROTOCOL

Figure 7 shows the principal data paths among the FreeBSD UNIX kernel routines for the network
memory protocol layer placed immediately above the Ethernet protocol layer.  

nmp

ÍÍÍÍÍÍ
ÍÍÍÍÍÍ

ether_input

nmpintr

xxstartxxread

xxintr

HARDWARE
INTERRUPT

INPUT
PACKETS

OUTPUT
PACKETS

INPUT
QUEUE

OUTPUT
QUEUE

Figure 7. FreeBSD UNIX network memory protocol server implementation
to the Ethernet protocol.

HARDWARE
INTERRUPT

PROCESSING

SOFTWARE
INTERRUPT

PROCESSING

Í
Í

New Code

Modified Code

Old Code

The routines whose names begin with the two letters “xx ” are part of the Ethernet hardware driver
code. Their implementation depends upon the particular hardware interface model installed. Each
implementation of these routines has a name unique to the associated hardware model. The “xx ”
shown in the figure is symbolic for the unique portion of these names.

When an Ethernet packet arrives at the hardware interface, the hardware loads the packet into an
input buffer and generates an interrupt. The xxintr  routine receives all interrupts from the hardware
interface. When it identifies the interrupt as indicating that a packet is now available in an input
buffer, it calls the xxread  routine to process the packet.

The xxread  routine reformats each received packet as a chain of one or more mbuf’s. An mbuf is
a small chunk of kernel memory designed to accommodate the expansion and contraction of network
packets due to encapsulation. The xxread  routine calls a kernel version of the malloc  routine to
allocate mbuf’s for the received packet.



28

The xxread  routine calls the ether_input  routine. The ether_input  routine source code
is in the file /usr/src/sys/net/if_ethersubr.c . The xxread  routine passes three
parameters to the ether_input  routine.

The first parameter is a pointer to a structure called the ifnet  structure. There is one ifnet
structure for each network hardware interface. The ifnet  structure maintains information unique to
the associated interface.

The second and third parameters are pointers to the Ethernet header and the Ethernet data of the
packet, respectively. Typically, these pointers point to bytes within the data area of the same mbuf
such that the Ethernet data immediately follows the Ethernet header, as it does in the network media
packet. The ether_input  routine, however, does not require this. The xxread  routine, therefore,
is viewed as “stripping” the Ethernet header encapsulation from the packet before passing it to the
ether_input  routine.

As described in the previous section, the network memory protocol needs to keep the Ethernet
header in order to obtain the Ethernet return address in case the received message generates a reply
message. Thus, the ether_input  routine must reattach the Ethernet header to the received mes-
sages. If the Ethernet header is already located in the proper place within the mbuf data area, this is
simply a matter of moving the mbuf data pointer so that it points to the beginning of the Ethernet
header rather than to the beginning of the Ethernet data.

The ether_input  routine sorts the received mbuf chains into input queues based upon the con-
tent of the ether_type  field in the Ethernet header. There is one input queue for each supported
next higher protocol. The ether_input  routine discards packets containing errors or requesting
unrecognized next higher protocols. The standard ether_input  routine must be modified to sup-
port the network memory protocol type field and input queue.

All the input processing to this point executes in response to an interrupt from the Ethernet hard-
ware interface. Once all the pending packets reach their input queues, the ether_input  routine
triggers a software interrupt and exits. The software interrupt priority is lower than the hardware
interrupt priority. The queue is necessary since several packets may be received at the high-priority
hardware interrupt level before the low-priority software interrupt processing has an opportunity to
execute.

The ether_input  routine informs the kernel software interrupt handler of the next higher proto-
col input queues that contain pending mbuf chains through a global variable called the software inter-
rupt word. Each input queue is assigned a unique bit position in the software interrupt word. The
ether_input  routine sets the associated bit when it enqueues an mbuf chain into an input queue.
The software interrupt handler calls the routines for the particular next higher protocols based upon
the bits that are set.

Network memory protocol message processing occurs at the kernel software interrupt level. It is
partitioned into two routines, the nmpintr  routine and the nmp routine.

If the software interrupt word bit assigned to the network memory protocol input queue is set, the
kernel software interrupt handler calls the nmpintr  routine. The nmpintr  routine contains a loop
that sequentially dequeues and processes each pending message in the input queue. It performs the
network memory protocol message processing that is unique to the Ethernet. This consists of convert-
ing the received Ethernet header into a new Ethernet header for the reply message.



29

The nmpintr  routine copies the media access control destination address for the reply message
Ethernet header from the media access control source address of the request message Ethernet header.
This will return the reply message back to the source of the original request message.

The header of the first mbuf of the message mbuf chain contains flags, initialized by the xxread
routine, indicating the destination address type. For unicast messages, the nmpintr  routine copies
the reply message source address from the request message destination address. This does not work
for multicast and broadcast messages because the request message destination address is not unique.
These require the nmpintr  routine to obtain the reply message source address from the network
hardware interface ifnet  structure. The mbuf provides the pointer to the ifnet  structure. The
xxread  routine initialized the pointer, m_pkthdr.rcvif , by calling the m_devget  function.

The nmpintr  routine calls the nmp subroutine. The nmp subroutine performs the network
memory protocol message processing that is common regardless of the network layers below the net-
work memory protocol layer. It implements the network memory protocol instruction set. It receives
the mbuf chain containing the received network memory protocol message and returns an mbuf chain,
if appropriate, containing the generated reply message. It returns a null pointer if there is no reply
message.

Although the nmp subroutine has no interest in the Ethernet header in the first mbuf of the mbuf
chain, it must not discard the Ethernet header if the message generates a reply. The nmpintr  routine
that called the nmp subroutine needs the Ethernet header for the reply return address. The nmpintr
routine, therefore, passes two parameters to the nmp subroutine, a pointer to the mbuf chain and an
offset from the start of the data of the first mbuf of the chain where the nmp subroutine should begin
processing. The nmp subroutine is expected to preserve any data between the beginning of the mbuf
data and the beginning of the data it processes. Beyond this restriction, the nmp subroutine is free to
allocate, modify, or free mbuf’s in the chain, as necessary, to implement the network memory proto-
col instructions specified by the message.

If the request message does not generate a reply message, the nmp subroutine discards all the mes-
sage mbuf’s after processing them and returns a null pointer. The nmpintr  routine, upon seeing the
null pointer, proceeds to the next message mbuf chain in the input queue, and if there are none, exits.

If the request message does generate a reply message, the nmpintr  routine enqueues the mbuf
chain provided by the nmp subroutine into the Ethernet output queue. It then checks to see whether
the hardware is currently transmitting messages from the output queue. If the hardware is transmitting
messages, then the message added to the queue will be transmitted, in turn, without further interven-
tion. If the hardware is not currently transmitting messages, then it must be explicitly started. The
nmpintr  routine informs the network interface driver to begin transmitting messages on the output
queue by calling the xxstart  routine. Finally, the nmpintr  routine checks for remaining mes-
sages in the input queue and, if there are none, exits.

8.2  NETWORK MEMORY PROTOCOL INTERFACE TO THE INTERNET PROTOCOL

Figure 8 shows the principal data paths among the FreeBSD UNIX kernel routines for the network
memory protocol layer placed immediately above the IP layer.

The network interface hardware loads the received packet into an input buffer and generates an
interrupt. The xxintr  routine identifies the hardware interrupt and calls the xxread  routine. The
xxread  routine reformats the packet as an mbuf chain and calls the ether_input  routine. The



30

ÍÍÍÍÍÍ
ÍÍÍÍÍÍ

Figure 8. FreeBSD UNIX network memory protocol server implementation
to the Internet protocol.

ÍÍ
New Code
Modified Code
Old Code

nmp

ether_input

nmpip_input

xxstartxxread

xxintr

HARDWARE
INTERRUPT

INPUT
PACKETS

OUTPUT
PACKETS

INPUT
QUEUE

HARDWARE
INTERRUPT

PROCESSING

SOFTWARE
INTERRUPT

PROCESSING

ether_output

ip_outputip_forwardipintr

OUTPUT
QUEUE

ether_input  routine enqueues the mbuf chain into the input queue for the protocol specified by
the Ethernet header ether_type  field, sets the respective bit in the software interrupt word, and
generates the software interrupt. IP protocol mbuf chains, including those encapsulating the network
memory protocol, go into the input queue for the IP protocol.

The data content of an IP protocol mbuf chain is called a datagram. The encapsulated data of the
datagram is called its message.

If the IP protocol bit in the software interrupt word is set, the software interrupt handler calls the
ipintr  routine. The ipintr  routine source code is in the file/usr/src/sys/netinet/
ip_input.c . The ipintr  routine contains a loop that sequentially dequeues and processes each
pending datagram mbuf chain in the input queue. The ipintr  routine is a large and complex routine
implementing datagram verification, option processing, forwarding, and reassembly, as well as pass-
ing the datagram mbuf chain to the next higher protocol layer. The following discussion only consid-
ers the IP protocol layer interface to the network memory protocol layer.

The protocol field in the IP header contains a number identifying the next higher protocol intended
to receive the datagram. The ipintr  routine uses this number as an index into an array called the
inetsw  array. The inetsw  array converts the protocol number into a new index, this time to an
entry within a table called the protosw  table. The pr_input  field of the selected entry contains



31

the address of the input routine for the next higher protocol associated with that entry. The ipintr
routine calls that input routine to pass the datagram mbuf chain to the next higher protocol layer.

The protosw  table entries also contain a field for the protocol number. One could locate an entry
for a particular protocol by sequentially searching the table for the entry with the desired value in that
field. The purpose of the inetsw  array is to replace the slow search with a fast direct mapping. The
kernel network software generates the inetsw  table during initialization based on the protocol num-
bers specified within the protosw  table entries.

If the IP header protocol field indicates that the datagram is for the network memory protocol, the
ipintr  routine calls the nmpip_input  routine. The nmpip_input  routine performs the net-
work memory protocol processing that is unique to the IP protocol. It converts the received IP header
into one suitable for the reply back to the client. The nmpip_input  routine calls the nmp subrou-
tine, the same one as described in the previous section, to perform the processing that is common
regardless of the network layer that is below the network memory protocol layer. It implements the
network memory protocol instruction set.

When the ipintr  routine passes the datagram mbuf chain to the nmpip_input  routine, it still
contains the IP header before the message data. The header is normally 20 bytes long, but it could be
longer if there are IP options. The nmpip_input  routine passes the header length along with a
pointer to the mbuf chain to the nmp subroutine. The nmp subroutine has no interest in the header,
but it preserves the header so that it is available to the nmpip_input  routine when the nmp subrou-
tine returns.

Sending a network memory protocol reply message back to the client is considerably more com-
plex immediately above the IP layer than it is immediately above the Ethernet layer. Since the Internet
Control Message Protocol (ICMP) also sends reply messages immediately above the IP layer, it pro-
vides a coding templet. Its icmp_reflect  routine returns datagrams containing reply messages.
The source code is in the file /usr/src/sys/netinet/ip_icmp.c .

The IP protocol does not modify its header source and destination Internet address fields as a data-
gram is forwarded through routers. The nmpip_input  routine uses the request datagram Internet
source address for the reply datagram Internet destination address. Thus, the initial source of the net-
work memory protocol message becomes the final destination of the network memory protocol reply
message.

If the request datagram Internet destination address is a unicast address, the nmpip_input  rou-
tine uses the request datagram Internet destination address as the reply datagram Internet source
address. If it is not a unicast address, it uses the Internet address of the network hardware interface
that received the datagram as the reply datagram Internet source address.

The nmpip_input  routine sends the reply datagram by calling the ip_output  routine. The
ip_output  routine has several input parameters. The first parameter is a pointer to the reply data-
gram mbuf chain. The second parameter, intended for a pointer to an mbuf chain of options, is set to a
null pointer since options are not currently implemented. The third parameter, intended for a pointer
to a route cache of destination addresses, is set to a null table since the nmpip_input  routine does
not maintain such a cache. The fourth parameter, used for flags, is set to zero. These flags include the
IP_ALLOWBROADCAST flag. Setting it to zero requests the ip_output  routine to discard any
reply datagrams having broadcast destination Internet addresses. The only way that a reply datagram



32

could have a broadcast Internet destination address is if the request datagram that generated the reply
had a broadcast Internet source address, and that would be illegal.



33

9.  NETWORK MEMORY PROTOCOL UNIX KERNEL MODIFICATIONS

The procedures for installing a new driver and for compiling a new kernel are covered in operating
system manuals. The procedure for installing a new local area network protocol is seldom presented.
This section describes the modifications to FreeBSD UNIX version 2.2.1 required to install the net-
work memory protocol on an Intel 386 or higher personal computer.

9.1  NETWORK MEMORY PROTOCOL INTERFACE TO THE ETHERNET PROTOCOL

Add the following line to file /usr/src/sys/netinet/if_ether.h  to define the value of
the Ethernet type field used for the network memory protocol.

#define ETHERTYPE_NMP 0x9000 /* network memory protocol */

The value of 9000 hexadecimal was chosen arbitrarily. It must be unique.

Add the following line to file /usr/src/sys/net/netisr.h  to define a bit in the software
interrupt word indicating that there is data in the network memory protocol input queue.

#define NETISR_NMP 28 /* network memory protocol */

The bit position, in this case 28, must be unique.

Add the following line to the file used to specify the configuration which was edited from the file
/usr/src/sys/i386/conf/GENERIC .

options ETHERNMP #Ethernet network memory protocol
options NMP #network memory protocol

This defines the ETHERNMP macro, used to include network memory protocol code at the Ethernet
layer in the compile of routines where it is an option, and the NMP macro, used to include the com-
mon nmp.c  code.

Add the following two lines to the file /usr/src/sys/conf/files  to include the two listed
files in the compile of the kernel.

netnm/nmp_ether.c optional ethernmp
netnm/nmp.c optional nmp

The nmp_ether.c  code implements the Ethernet input queue software interrupt processing. It calls
the nmp.c  code, which implements the network memory protocol instruction set.

Add the following code to the file /usr/src/sys/net/if_ethersubr.c  near the top
where there are similar declarations.

#ifdef ETHERNMP
extern struct ifqueue nmpintrq;
void nmp_init();
#endif

These lines declare the input queue for the network memory protocol software interrupt and the sub-
routine used to initialize the network memory protocol variables.



34

Also add the following code to the file /usr/src/sys/net/if_ethersubr.c , within the
routine ether_input , as an ether_type  case to the switch  statement.

#ifdef ETHERNMP
case ETHERTYPE_NMP:

M_PREPEND(m, ETHER_HDR_LEN, M_DONTWAIT);
if((caddr_t)eh != (caddr_t)m->m_data) {

bcopy((caddr_t)eh, (caddr_t)m->m_data,
 ETHER_HDR_LEN);

}
schednetisr(NETISR_NMP);
inq = &nmpintrq;
break;

#endif

The M_PREPEND macro makes space available immediately before the existing data in the first
mbuf. This space will hold the Ethernet header so that the return address is available in case the mes-
sage generates a reply. The if  statement checks whether the header is already present in the space
and, if not, copies it into the space. The schednetisr  macro takes care of the details of setting the
bit dedicated to the network memory protocol in the software interrupt word. The assignment state-
ment before the break  statement identifies the input queue where the mbuf chain is enqueued for the
software interrupt.

Add the following code to the source file /usr/src/sys/net/if_ethersubr.c , within
the routine ether_ifattach , at the end of the routine.

#ifdef ETHERNMP
nmp_init();
#endif

The nmp_init  routine initializes the length of the network memory protocol software interrupt
input queue. The source is in the file /usr/src/sys/netnm/nmp_ether.c .

struct ifqueue nmpintrq;
int nmpqmaxlen = IFQ_MAXLEN;
void
nmp_init(void)
{

nmpintrq.ifq_maxlen = nmpqmaxlen;
}

The single statement of the nmp_init  routine could have been placed in the ether_ifattach
routine rather than in a separate routine. It is placed in a separate subroutine for modularity.

The source file /usr/src/sys/netnm/nmp_ether.c  also contains a macro executed dur-
ing kernel initialization to link the nmpintr  routine and the associated software interrupt word bit
position NETISR_NMP to the software interrupt handler.

NETISR_SET(NETISR_NMP, nmpintr);

The remainder of the source file contains the nmpintr  routine.



35

9.2  NETWORK MEMORY PROTOCOL INTERFACE TO THE INTERNET PROTOCOL

Add the following line to file /usr/src/sys/netinet/in.h  to define the protocol number
for the network memory protocol.

#define IPPROTO_NMP 200 /* network memory protoco */

The protocol number is the number that appears in the tenth byte of the IP header. The value 200 dec-
imal was chosen arbitrarily. It must be unique.

Add the following line to the file used to specify the configuration which was edited from the file
/usr/src/sys/i386/conf/GENERIC .

options IPNMP#IP network memory protocol
options NMP #network memory protocol

The second line is not added if already present. This defines the IPNMP macro, used to include net-
work memory protocol code at the IP layer in the compile of routines where it is an option, and the
NMP macro, used to include the common nmp.c  code.

Add the following two lines to the file /usr/src/sys/conf/files  to include the two listed
files in the compile of the kernel.

netnm/nmp_ip.c optional ipnmp
netnm/nmp.c optional nmp

The second line is not added if already present. The nmp_ip.c  code implements the network
memory protocol interface to the IP layer. It calls the nmp.c  code, which implements the network
memory protocol instruction set.

Add the following code to the file /usr/src/sys/netinet/in_proto.c  near the top
where there are similar declarations.

#ifdef IPNMP
extern void nmpip_input __P((struct mbuf *, int))
#endif

The __P macro define the C language types of the two input variables of the nmpip_input  rou-
tine.

Also add the following code to the file /usr/src/sys/netinet/in_proto.c  as an entry
within the protosw  table structure.

#ifdef IPNMP
{ SOCK_RAW, &inetdomain, IPPROTO_NMP,

PR_ATOMIC|PR_ADDR,
nmpip_input, 0, 0, rip_ctloutput,
rip_usrreq,
0, 0, 0, 0,

},
#endif

This table entry links the protocol number IPPROTO_NMP to the nmpip_input  routine.



36



37

10.  NETWORK MEMORY PROTOCOL SERVER TESTING

This section describes the computer system used to test network memory protocol server imple-
mentations and to measure their performance.

10.1  TEST SYSTEM

Figure 9 show the test system configuration for the network memory protocol server placed
immediately above the Ethernet protocol layer.

��������

Figure 9. Network memory protocol performance test configuration.

BERKELEY
PACKET
FILTER

USER CLIENT
MESSAGE

GENERATOR

BERKELEY
PACKET
FILTER

ETHERNET
MESSAGE
DISPLAY

NETWORK
MEMORY
SERVER

NETWORK
MEMORY
DISPLAY

REQUEST REPLYREQUEST REQUEST REPLY

The Berkeley Packet Filter is a UNIX driver permitting an application program to read and write
raw Ethernet packets. The filter feature of the driver permits an application to write a logic formula
specifying the field contents for the packets that the driver receives. The Berkeley Packet Filter also
time-stamps each packet received.

The Berkeley Packet Filter is usually included in the FreeBSD source code product, but is not part
of the default kernel configuration. It can be compiled into the kernel by adding the following line to
the configuration file derived from the file /usr/src/sys/i386/conf/GENERIC .

#pseudo-device bpfilter 4 #Berkeley packet filter

The number, in this case 4, specifies the number of simultaneous opens permitted by the driver.

As shown in figure 9, the test system consists of three processors.

The left processor generates network memory protocol sensor client request messages. It writes the
messages to the Ethernet through the Berkeley Packet Filter driver. It is used to generate both valid
messages and messages deliberately containing protocol errors to test the network memory protocol
server functional implementation.

The right processor implements the network memory protocol server under test. In addition to the
server, it implements an application program with access to the network memory. This program is
used to verify that network memory protocol server writes to the network memory were performed
properly.

The middle processor is used to monitor the network memory protocol message traffic, both
requests and replies, that passes over the Ethernet interconnecting the three processors. The test sys-
tem avoids introducing measurement delays by isolating the monitoring function in a separate proces-
sor. The Berkeley Packet Filter driver selects the packets of interest. The display program is used to



38

verify network addressing and the operations performed on protocol fields. The display program also
receives the time stamps generated by the Berkeley Packet Filter driver. These time stamps are the
basis for computing server performance.

The Berkeley Packet Filter driver obtains time-stamp values from the kernel microtime  routine.
The network memory protocol server uses the same routine in the code for its Write Time Stamp
instruction. The routine provides a resolution in the neighborhood of 10 to 20 microseconds, depend-
ing upon the supporting processor hardware.

10.2  TEST RESULTS

Comparisons were made between simple database transactions performed by a network memory
protocol server located immediately above the Ethernet layer versus the same transactions performed
by a server interfaced to a User Datagram Protocol (UDP) socket. In all the cases tested, the network
memory protocol server was faster. This is to be expected for the many reasons given in the previous
section comparing the network memory approach to the socket approach. In fairness to the UDP pro-
tocol, however, it needs to be noted that the UDP performs services, including datagram routing, reas-
sembly, and error-checking, which are not performed by the network memory protocol immediately
above the Ethernet layer.

Server performance is computed as the average round-trip delay from when the client sends the
request message under test to when the server sends the reply message back to the client. It is impor-
tant to execute performance tests on a quiet local area network so that unrelated network traffic does
not interfere with the measurements.

Tests were performed using a 50 MHz Intel 486 personal computer for the network memory host
and a Pentium personal computer for the Ethernet monitor. The network memory protocol nmp rou-
tine was modified to work with user buffers rather than mbuf’s for the servers employing sockets.
The round-trip times for the simple transactions, such as addressing and then reading or writing a few
bytes, were approximately 200 microseconds for the network memory protocol server, approximately
330 microseconds for the UDP socket server, and approximately 750 microseconds for the TCP
socket server.

There is a slight performance gain of about 10 to 20 microseconds when network memory protocol
client request messages are sent in rapid succession rather than separated in time. When messages
arrive in rapid succession, they enter the input queue and the nmpintr  routine processes them as a
group in response to a single software interrupt. When they are separated in time, each enters the
input queue and is processed in response to a separate software interrupt. The latter is less efficient
due to the additional software interrupt context switching and nmpintr  routine initializations. Cli-
ents can reduce network memory server software interrupts and, thus, enhance server performance,
by grouping several transactions into the same local area network message.



39

11.  SUMMARY OF CONCLUSIONS

The network memory protocol implements local area network access to high-throughput, real-time
databases more efficiently than servers employing traditional sockets. The efficiency is gained by
avoiding unnecessary context switches and data buffer copies. Since the network memory protocol
provides random access to data, it is more flexible than socket approaches, which are inherently
sequential. The socket approach, on the other hand, does a better job of activating tasks in response to
associated message arrivals.

User-defined partitions and overlays can organize the network memory host user address space
independently of the global network memory protocol address space. Partitioning can conserve the
amount of kernel memory allocated to network memory. It can also map non-contiguous kernel
address spaces for access to different types of memory, such as memory-mapped input/output hard-
ware.

UNIX application software interfaces to the network memory through a network memory character
device driver. The first open  system call allocates the network memory within kernel memory and
the last close  system call frees it. The ioctl  system call defines the partitions. The mmap system
call maps the allocated network memory into the application user space. The application then has
direct access to the network memory without further system calls.

The network memory protocol server, implemented within the kernel, may access the network
memory records while an application task was in the process of accessing the same records. Coor-
dination algorithms, which avoid system calls, have been developed to ensure atomic access to net-
work memory data. The functions required by these algorithms, plus the need for real-time clock syn-
chronization in real-time system, guided the design of the network memory protocol message format.

Network memory protocol messages are composed of instructions that together form a simple
sequential program. The network memory protocol server can be viewed as a very simple processor
that executes the program defined by the instructions forming the message. The instructions support
both direct and pointer access to data, a few simple logic and arithmetic functions, time-stamping, and
security keys.

Network memory protocol interfaces to both the Ethernet layer and the Internet Protocol layer have
been presented. Immediately above the Ethernet layer, the network memory protocol server was
found to execute approximately a third faster than an equivalent server using traditional sockets to the
User Datagram Protocol.

This research has explored the feasibility and potential of the network memory protocol. Additional
work will be necessary to convert the experimental software into a fully functional product ready for
widespread distribution.

The research reported in this paper relies upon no special-purpose hardware. It integrates the net-
work memory protocol into the set of existing network software. The simplicity of the network
memory protocol instructions suggests that the network memory protocol server could be imple-
mented in a hardware memory system with a local area network interface, rather than in software
executing within a host processor. This would be an area for possible future research.


